69 research outputs found

    Galactomannan and 1,3-β-d-Glucan Testing for the Diagnosis of Invasive Aspergillosis

    Get PDF
    Invasive aspergillosis (IA) is a severe complication among hematopoietic stem cell transplant recipients or patients with hematological malignancies and neutropenia following anti-cancer therapy. Moreover, IA is increasingly observed in other populations, such as solid-organ transplant recipients, patients with solid tumors or auto-immune diseases, and among intensive care unit patients. Frequent delay in diagnosis is associated with high mortality rates. Cultures from clinical specimens remain sterile in many cases and the diagnosis of IA often only relies on non-specific radiological signs in the presence of host risk factors. Tests for detection of galactomannan- (GM) and 1,3-β-d-glucan (BDG) are useful adjunctive tools for the early diagnosis of IA and may have a role in monitoring response to therapy. However, the sensitivity and specificity of these fungal biomarkers are not optimal and variations between patient populations are observed. This review discusses the role and interpretation of GM and BDG testing for the diagnosis of IA in different clinical samples (serum, bronchoalveolar lavage fluid, cerebrospinal fluid) and different groups of patients (onco-hematological patients, solid-organ transplant recipients, other patients at risk of IA)

    Amoebal pathogens as emerging causal agents of pneumonia

    Get PDF
    Despite using modern microbiological diagnostic approaches, the aetiological agents of pneumonia remain unidentified in about 50% of cases. Some bacteria that grow poorly or not at all in axenic media used in routine clinical bacteriology laboratory but which can develop inside amoebae may be the agents of these lower respiratory tract infections (RTIs) of unexplained aetiology. Such amoebae-resisting bacteria, which coevolved with amoebae to resist their microbicidal machinery, may have developed virulence traits that help them survive within human macrophages, i.e. the first line of innate immune defence in the lung. We review here the current evidence for the emerging pathogenic role of various amoebae-resisting microorganisms as agents of RTIs in humans. Specifically, we discuss the emerging pathogenic roles of Legionella-like amoebal pathogens, novel Chlamydiae (Parachlamydia acanthamoebae, Simkania negevensis), waterborne mycobacteria and Bradyrhizobiaceae (Bosea and Afipia spp.

    Immunogenetics of invasive aspergillosis

    Get PDF
    Invasive aspergillosis is one of the most important infections in hematopoietic stem cell transplant recipients, with an incidence rate of 5-15% and an associated mortality of 30-60%. It remains unclear why certain patients develop invasive aspergillosis while others, undergoing identical transplant regimen and similar post transplant immunosuppression, do not. Over the last decade, pattern recognition receptors such as Toll-like receptors (TLRs) and the C-type lectin receptors (CLRs) have emerged as critical components of the innate immune system. By detecting specific molecular patterns from invading microbes and initiating inflammatory and subsequent adaptive immune responses, pattern recognition receptors are strategically located at the molecular interface of hosts and pathogens. Polymorphisms in pattern recognition receptors and downstream signaling molecules have been associated with increased or decreased susceptibility to infections, suggesting that their detection may have an increasing impact on the treatment and prevention of infectious diseases in the coming years. Infectious risk stratification may be particularly relevant for patients with hematologic malignancies, because of the high prevalence and severity of infections in this population. This review summarizes the innate immune mechanisms involved in Aspergillus fumigatus detection and the role of host genetic polymorphisms in susceptibility to invasive aspergillosi

    Potential Microbiological Effects of Higher Dosing of Echinocandins

    Get PDF
    The antifungal "paradoxical effect” has been described as the reversal of growth inhibition at high doses of echinocandins, most usually caspofungin. This microbiological effect appears to be a cellular compensatory response to cell wall damage, resulting in alteration of cell wall content and structure as well as fungal morphology and growth. In vitro studies demonstrate this reproducible effect in a certain percentage of fungal isolates, but animal model and clinical studies are less consistent. The calcineurin and Hsp90 cell signaling pathways appear to play a major role in regulating these cellular and structural changes. Regardless of the clinical relevance of this paradoxical growth effect, understanding the specific actions of echinocandins is paramount to optimizing their use at either standard or higher dosing schemes, as well as developing future improvements in our antifungal arsena

    Antifungal activity of compounds targeting the Hsp90-calcineurin pathway against various mould species

    Get PDF
    Objectives Invasive mould infections are associated with a high mortality rate and the emergence of MDR moulds is of particular concern. Calcineurin and its chaperone, the heat shock protein 90 (Hsp90), represent an important pathway for fungal virulence that can be targeted at different levels. We investigated the antifungal activity of compounds directly or indirectly targeting the Hsp90-calcineurin axis against different mould species. Methods The in vitro antifungal activity of the anticalcineurin drug FK506 (tacrolimus), the Hsp90 inhibitor geldanamycin, the lysine deacetylase inhibitor trichostatin A and the Hsp70 inhibitor pifithrin-μ was assessed by the standard broth dilution method against 62 clinical isolates of Aspergillus spp. and non-Aspergillus moulds (Mucoromycotina, Fusarium spp., Scedosporium spp., Purpureocillium/Paecilomyces spp. and Scopulariopsis spp.) Results FK506 had variable antifungal activity against different Aspergillus spp. and was particularly active against Mucor spp. Geldanamycin had moderate antifungal activity against Fusarium spp. and Paecilomyces variotii. Importantly, trichostatin A had good activity against the triazole-resistant Aspergillus ustus and the amphotericin B-resistant Aspergillus terreus as well as the MDR Scedosporium prolificans. Moreover, trichostatin A exhibited synergistic interactions with caspofungin against A. ustus and with geldanamycin against Rhizopus spp. for which none of the other agents showed activity. Pifithrin-μ exhibited little antifungal activity. Conclusions Targeting the Hsp90-calcineurin axis at different levels resulted in distinct patterns of susceptibility among different fungal species. Lysine deacetylase inhibition may represent a promising novel antifungal strategy against emerging resistant mould

    β-Glucan Antigenemia Assay for the Diagnosis of Invasive Fungal Infections in Patients With Hematological Malignancies: A Systematic Review and Meta-Analysis of Cohort Studies From the Third European Conference on Infections in Leukemia (ECIL-3)

    Get PDF
    This Third European Conference on Infections in Leukemia meta-analysis of high-quality hemato-oncological cohort studies shows that 2 consecutive positive 1,3-β-D-glucan assays have high specificity and both positive and negative predictive values but low sensitivity for diagnosis of invasive fungal infectio
    corecore